3.492 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=116 \[ \frac {4 a^2 (2 A+3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (A-3 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {4 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}} \]

[Out]

4*a^2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(2*A+3
*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*B*(a^2+a^2*cos(d
*x+c))*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a^2*(A-3*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {2954, 2975, 2968, 3023, 2748, 2641, 2639} \[ \frac {4 a^2 (2 A+3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (A-3 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {4 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(4*a^2*A*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(2*A + 3*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(A - 3*B)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*B*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx &=\int \frac {(a+a \cos (c+d x))^2 (B+A \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{2} a (A+3 B)+\frac {1}{2} a (A-3 B) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {\frac {1}{2} a^2 (A+3 B)+\left (\frac {1}{2} a^2 (A-3 B)+\frac {1}{2} a^2 (A+3 B)\right ) \cos (c+d x)+\frac {1}{2} a^2 (A-3 B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a^2 (A-3 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {4}{3} \int \frac {\frac {1}{2} a^2 (2 A+3 B)+\frac {3}{2} a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a^2 (A-3 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\left (2 a^2 A\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2 (2 A+3 B)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 (2 A+3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (A-3 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.39, size = 735, normalized size = 6.34 \[ -\frac {A \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \left (\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt {\tan ^2(c)+1} \sqrt {1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt {\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac {\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt {\tan ^2(c)+1}}+\frac {2 \cos ^2(c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{2 d (A \cos (c+d x)+B)}-\frac {2 A \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin (c) \left (-\sqrt {\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt {\cot ^2(c)+1} (A \cos (c+d x)+B)}-\frac {B \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin (c) \left (-\sqrt {\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{d \sqrt {\cot ^2(c)+1} (A \cos (c+d x)+B)}+\frac {\cos ^{\frac {7}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \left (-\frac {\csc (c) \sec (c) (2 A \cos (2 c)+2 A+B \cos (2 c)-B)}{4 d}+\frac {A \sin (c) \cos (d x)}{6 d}+\frac {A \cos (c) \sin (d x)}{6 d}+\frac {B \sec (c) \sin (d x) \sec (c+d x)}{2 d}\right )}{A \cos (c+d x)+B} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*(-1/4*((2*A - B + 2*A*Cos
[2*c] + B*Cos[2*c])*Csc[c]*Sec[c])/d + (A*Cos[d*x]*Sin[c])/(6*d) + (A*Cos[c]*Sin[d*x])/(6*d) + (B*Sec[c]*Sec[c
 + d*x]*Sin[d*x])/(2*d)))/(B + A*Cos[c + d*x]) - (2*A*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4
}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - Arc
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*
Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (B*Cos[c + d*x]^3*Csc[c]*
HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*
(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*S
in[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]
^2]) - (A*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((Hypergeomet
ricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x +
 ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[
Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]])
)/(2*d*(B + A*Cos[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{3} + {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} + {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right ) + A a^{2} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*a^2*cos(d*x + c)*sec(d*x + c)^3 + (A + 2*B)*a^2*cos(d*x + c)*sec(d*x + c)^2 + (2*A + B)*a^2*cos(d*
x + c)*sec(d*x + c) + A*a^2*cos(d*x + c))*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 4.59, size = 388, normalized size = 3.34 \[ -\frac {4 a^{2} \left (2 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (A +3 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x)

[Out]

-4/3*a^2*(2*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+3*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*A*(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2
*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 3.16, size = 134, normalized size = 1.16 \[ \frac {2\,A\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2,x)

[Out]

(2*A*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/2 + (d*x)/2, 2) + 4*ellipticF(c/2 + (d*x)/2, 2)))/(3
*d) + (2*B*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a^2*sin(c + d*x
)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________